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II. STATEMENT OF THE PROBLEM STUDIED

The long-term goal of this project is to create nanostructures by passing a beam of atoms through two or more
standing wave light fields. Following interaction with the standing wave fields, the atomic density contains all even
spatial harmonics of the standing wave light field. At appropriate distances following the interaction with the light
fields the different harmonics are focused, enabling one to isolate each of the harmonics. By transferring the atomic
density spatial distribution to a surface, one can create pure harmonic gratings having periods as small as tens of
nanometers. In addition to forming pure harmonic gratings, we are working on methods to effectively focus atoms
with high resolution (spot size of order 15 nm) and high periodicity (of order 50 nm). Methods for probing the density
patterns with nanometer resolution are being explored.

III. SUMMARY OF THE MOST IMPORTANT RESULTS

Many of the details of our accomplishments are contained in the publications listed below, as well as in the annual
progress reports submitted in connection with this Grant. In this final report, we highlight some of the important
results that have emerged from our investigations. The research effort is a combined theoretical-experimental program,
with the theory component housed at the University of Michigan and the experimental component at New York
University.

A. Theory

Our theoretical efforts have focused on new schemes to focus atoms and to produce periodic sinusoidal matter
gratings. Optical fields having wavelength A\ are used to create matter gratings having period A/2n, where n is an
integer, and to focus atoms to spot sizes as small as 10 nm. To illustrate some of the theoretical progress we have
made along these lines, we summarize our results on (i) a conical lens that can be used to focus atoms to a single
spot, (ii) a multi-color field geometry that can be used to produce high-harmonic, sinusoidal, spatial matter gratings
in a single atom-field interaction zone, (iii) a filtered Talbot lens that combines atom focusing and the Talbot effect to
produce high spatial period, high resolution matter gratings, (iv) atom focusing in the Raman-Nath regime and (v)
nonlinear ground state pump-probe spectroscopy.

1. Conical lens for atom focusing

Following the first observations of atom focusing by a standing wave field, a number of different techniques to focus
atoms have been proposed and realized using atom-resonant light field interactions. In most experiments an atomic
beam is focused by a resonant standing wave optical field. This field produces a lens array for atoms located near the
standing wave field’s antinodes. At the focal plane the atomic spatial distribution consists of a periodic set of lines
or dots having extremely small widths and distanced from one another by A\/2, where A is the wave length of the
standing wave field. In spite of the extremely high spatial resolution (10-20 nm) achieved to date, the application of
this technology to atomic lithography is restricted since a set of lines cannot be used to draw a pattern of arbitrary
shape on a substrate. To achieve this goal one requires a field intensity spatial distribution that has a single sharp
extremum to serve as a single lens for atoms. Using a technique similar to that proposed by Ashkin twenty-five
years ago to trap neutral atoms, one can build this lens. By cutting an annulus in an opaque screen of mean radius
a and thickness h << a, centered at x = 0 and y = 0, one can carve a laser beam propagating along the z-axis
into a cylindrical shell (see Fig. 1). When reflected from a conical mirror, this beam becomes a cylindrical wave
converging towards the z-axis. Since the field after reflection can be treated as a continuous set of traveling waves all
converging to the z-axis, one expects that the intensity profile in the plane (z,y) contains only one sharp extremum
and, therefore, acts as a lens for an atomic beam propagating along the z-axis. The focused atoms can be deposited
on a substrate, producing a spot. The entire apparatus can be translated to produce lines of atoms of arbitrary length
and shape with line widths of order of the focus spot size (10-20 nm or even narrower). One can estimate that the
efficiency of focusing for such a lens is 102-103 better than that achieved with standing wave fields.



FIG. 1. Schematic diagram of a conical lens. Light propagating along a cylindrical shell reflects from a conical mirror and
forms a lens that focuses an atomic beam onto one spot.

Increasing the focusing efficiency is extremely important for atom lithography. For example, 300 mW laser sources
have been used to focus Cr atoms into a set of lines having width 10 nm. Estimates show that using the scheme
described above one can focus Cr atoms to a single spot having the same radius (10 nm) with a laser power of 20
uW only. Using low to moderate laser power, one can construct a conical lens that should improve the current
resolution limits in atom nanolithography. We have carried out calculations for the conical lens using both numerical
and analytical techniques [1] (reference numbers correspond to references in the Bibliography section) in the thin lens
regime, when the Raman-Nath approximation is valid. We have derived an integral representation for the atomic
wave function after scattering from the field. Numerical evaluation of this integral allows us to determine the position
of the focal plane, and the shape and width of the atomic spatial distribution at this plane.

2. Multicolor field geometry

Consider the field configuration shown in Fig. 2, when 6; = —63 = 6. In the atomic rest frame, the fields shown
constitute a pulse of radiation having duration T', and it is assumed that |6/ > 1. In order to create an atomic
density which varies as cos(2kz), where k is the field propagation constant, one must have a two-photon transition in
which one photon is absorbed from the field having frequency €2 and emitted into either the field having frequency
Q+6 or the field having frequency Q — 6. However, this two-photon process is not resonant and will average to zero
over the pulse duration. In other words, the second spatial harmonic that is produced in such two-photon processes
is totally suppressed. However, a four photon process involving the absorption of two photons of frequency 2 and
emission of photons at frequencies Q + 6 and Q — § is resonant and leads to an atomic density that varies as cos(4kz).
Thus, with a single field interaction zone using a standing wave field having wavelength )\, it is possible to produce
atom gratings having period A/4. More generally, if the frequencies of the waves shown in Fig. 2 are Q, Q + 61, and
Q + §-, and if one chooses the pulse duration T to be much larger than |§j|’1 and takes n161 + nado = 0, where ny
and ng are integers with no common factors, one can create matter gratings having period A/[2(n1 + na)]. A proper
choice of the field intensities allows one to form atomic density patterns that are very nearly sinusoidal.

Depending on the frequency €2, either atom amplitude or phase gratings can be produced. For resonant fields,
amplitude gratings are carved in individual state populations. For |2 —w|T > 1 (w is the atomic transition frequency),
a phase grating is produced in the ground state probability amplitude that leads eventually to a focused series of lines
or dots separated by A/[2(n1 + n2)]. Shown in Figs. 3 and 4 are atom amplitude and phase gratings having periods
A/10 and A/6, respectively. The x;’s are the Rabi frequencies of the laser fields. A course graining of the relevant
mathematical equations enables one to obtain analytical expressions for the atomic density over a wide range of field



amplitudes and detunings [2]. This technique can be extended to the echo experiment and to experiments where
photon recoil plays a critical role. In this way, the lowest harmonic appearing in the atomic density can be suitable
for some nanolithographic applications.
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FIG. 2. Atom-field geometry. All fields overlap in the interaction region. The detunings 61 and 2 are chosen such that
|61| T, |62| T > 1, where T is the interaction time in the atomic rest frame.
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FIG. 3. Graphs of the upper state probability as a function of kz for excitation by a Gaussian pulse, with 1161 + n262 = 0.
Graphs are shown for (n1 = 2, ng = 1) (sixth harmonic) and (n1 = 3, nz = 2) (tenth harmonic).
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FIG. 4. Graphs of the ground state phase as a function of kz for excitation by a Gaussian pulse, with n161 + n262 = 0.
Graphs are shown for (n1 = 2, np = 1) (sixth harmonic) and (n1 = 3, nz = 2) (tenth harmonic).



8. Filtered Talbot lens

The multicolor field technique allows one to produce high-order harmonic gratings having period A/2n, using
resonant radiation having period A. The grating profiles are approximately sinusoidal and can effectively diffract x-ray
radiation. On the other hand, alternative methods are needed for achieving the highest resolution in atom lithography.
Atom focusing offers unique possibilities in this area. Using standing wave optical fields having wavelength A, one
has been able to write a periodic array of lines or dots having period A/2. The atomic "lines” or ”dots” themselves
have widths w that are very small compared with \/2; widths (half width at half maximum), as small as 6.5 nm have
been achieved However, such focusing techniques result in periodic structures whose period cannot be less than \/4.

To address this issue we developed a method which allows one to focus atoms in a periodic array of lines having
the same resolution w but n-times smaller period [3]. To obtain a %—period atom grating one can use the fractional
Talbot effect. The atomic Talbot effect is a self-imaging of the atom density, modulated initially with a period \/2,
on the Talbot distance Lp = A2 /2Xap, where \gp = h/Mu is the atomic de Broglie wavelength, and M and u are
the atomic mass and velocity, respectively. The fractional Talbot effect refers to the formation of ﬁfperiod gratings
at fractional Talbot distances Ly/m (m = n or 2n). These gratings have the same profile as the initial 4 —period
grating but n—times smaller amplitude. The necessary condition for this effect is that the initial grating consists only
of the sharp peaks having width w< A\/2n. Even though the fractional Talbot effect does not allow one to improve
the resolution w, it allows one to transform a given high resolution grating having period \/2 into high-order gratings
having the same resolution.

An off resonant standing wave field can focus atoms at a focal distance zy. One might expect that, as a result of
the fractional Talbot effect, reduced period gratings should occur at distances zy + Ly /m. Some numerical evidences
for this effect have been obtained previously, but a more detailed analysis reveals that the background density between
the focused atoms seriously degrades the fractional Talbot effect. Estimates and numerical calculations (see Figs. 5,
6) show that this is a strong effect. For example a ratio of background to peak density of 0.01 at z = z; can result, at
the fractional Talbot distance, in changes to the atomic density that can deviate by as much as 20% from the density
that would have been produced in the absence of any background density.

To overcome this difficulty we apply one more optical element, an optical mask, at the focal plane of the first
standing wave field. A resonant, standing wave optical field can be used for the optical mask, filtering all atoms
except those passing near the nodes of the field. The optical mask removes the background density in the focal
plane. One can expect this filtered Talbot lens to produce perfectly periodic high-contrast, high-resolution high-order
gratings. Examples of such gratings, obtained for weak and strong masking fields are shown in Figs. 5 and 6
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FIG. 5. Filtered Talbot lens production of high-order atomic density patterns (solid lines) at distances zy + Lp/m in the

weak mask limit. For comparison, we show the spatial distributions of the metastable atomic density produced by the optical
mask alone at the fractional Talbot distances (dashed lines) and by the focusing field alone at the fractional Talbot distances
from the focal plane (dot-dashed lines).
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strong mask limit. The parameter |x27| ( x2 is the Rabi frequency of the masking field) is chosen for each plot by requiring
that the ratio of the maximum and minimum amplitudes of the peaks in the fractional density pattern are as close as possible
to unity. In each case this choice produces the best nth-order fractional self-image. The mask only curves are multiplied by
a factor 2.5 to enhance their visibility.

4. Focusing of atoms by off-resonant and resonant fields.

A detailed calculation of focusing of atoms by resonant and off-resonant standing wave, optical fields was carried
out in [4]. Both Fourier analysis and scalar Kirchhoff diffraction theory were used to obtain exact numerical and
analytical approximations for the spot size, focal position, atomic density at the focus, and depth of focus. These
quantities are plotted in Figs. 7 and 8 for both resonant and off resonant fields as a function of laser power.
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(half-widths of the density profiles at the focal planes (curve w) and focal distances (curves ty).



The spot size w is in units of A/4x, and the focal plane position is in units of the Talbot length. It is seen that
the parameters oscillate as a function of field strength for resonant excitation. This new structure can be explained
as an interference effect. The interference is between a component of the atomic wave function that is responsible for
focusing and a component that gives rise to a background signal.
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FIG. 8. The same for focusing by a resonant standing wave field.

We have shown that focusing by off-resonant fields in the Raman Nath approximation yields results that should be
competitive with those obtained in the ”thick lens” limit.

5. Nonlinear, ground state spectroscopy

In conventional pump-probe spectroscopy of an atomic vapor, one monitors the absorption of a probe field on an
atomic transition that is driven simultaneously by a pump field of arbitrary strength. A calculation of the probe
field absorption is relatively straightforward in the weak probe field limit. The width of these spectral components is
on the order the excited state decay rates, neglecting any Doppler broadening. Experimental studies of pump-probe
spectroscopy on a single transition have been few and far between.

We have proposed a method for carrying out pump-probe spectroscopy on a ground-state Raman transition in a
thermal vapor [5]. The atom field geometry is indicated schematically in Fig. 9.
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FIG. 9. Schematic diagram of the atom-field system. Fields E; and E drive only the 1 — e transition and field E only the
2 — e transition



Three-level atoms interact with two optical fields, F; and Es, producing strong coupling between initial and final
levels 1 and 2 via an intermediate excited state level e. Field E; couples only levels 1 and e, while field E5 couples
only levels 2 and e. In addition, there is a weak probe field F that couples only levels 1 and e. As a consequence, fields
FE and F» can also drive two-photon transitions between levels 1 and 2. The incident fields are assumed to be nearly
copropagating so that all two-photon Doppler shifts can be neglected. In this limit and in the limit of large detuning
on each single photon transition, one can consider the atoms to be stationary with regards to their interaction with
the external fields. In calculating the probe absorption spectrum, one finds that all the line widths are determined by
the effective ground state decay rate.

We expect this technique to be an important addition to nonlinear probes of atomic systems. It is capable of
resolving recoil-induced effects in cold atomic samples or Bose condensates. One has control over setting of the recoil
splittings by a choice of field directions. Moreover there is an additional control knob in this technique, the ratio of
the two pump filed amplitudes, that is not available in conventional pump-probe spectroscopy.

B. Experiment

Experimental efforts have concentrated on developing techniques for creating and detecting periodic atomic density
gratings with sub-optical wavelength periods. Experiments have been carried out with Rb atoms in both a magneto-
optical trap (MOT) and in an atomic beam. Much of the efforts involving the atomic beam have been toward
assembling the apparatus and developing a bright source of atoms. To illustrate some of the experimental progress,
we summarize our results on (i) creation and detection of ground state coherence gratings, (ii) creation and detection
of high order atomic density gratings using echo techniques, (iii) the use of an optical mask for the production and
measurement of periodic density gratings, (iv) the production of a bright atomic beam source, (v) the creation of
magnetic coherence gratings in the atomic beam, and (vi) transverse cooling of the atomic beam.

1. Creation and detection of ground-state coherence gratings in laser-cooled atoms and in a room-temperature vapor

We have developed techniques to create and detect atomic ground state coherence gratings. Such gratings are
produced by the application of one or more pulses, each consisting of two traveling-wave laser fields of orthogonal
polarizations. These gratings have a period determined by the difference in wavevectors of the two traveling-wave
fields. For counterpropagating fields, the period is half an optical wavelength. The gratings can be viewed by observing
the light scattered by the atoms of an incoming traveling wave (see Fig. 10).

If a single standing-wave pulse is applied, the resulting grating can be viewed immediately after this pulse, and is
referred to as a magnetic grating free induction decay (MGFID). The signal decays due to Doppler dephasing arising
from the atomic motion. The time scale of the decay is determined by the angle between the two excitation beams
and the transverse velocity spread. The time dependence of the decay can be used to measure the transverse velocity
distribution of the atoms with high resolution. If a second pulse is applied at time T, the coherence grating will
reform at time 27" due to the cancellation of the Doppler phase. The resulting signal is called a magnetic grating echo
(MGE). Since the observed coherence is in the atomic ground state, the lifetime of the echo should be limited only by
how long the atoms remain in the interaction region. In a sample of laser-cooled atoms, we have observed the effect
of atomic recoil from the absorption and emission of photons [6]. The MGE was also observed in a room temperature
vapor [7], and the effect of collisions with a background vapor (Ar) was observed by the effect on the MGE lifetime [8].
Increasing the pressure of the background vapor at first reduces the MGE lifetime, but for sufficiently high pressure,
the MGFID lifetime increases due to collisional localization of the atoms.

2. Creation and detection of high order atomic density gratings using echo techniques

We have demonstrated a technique for generation and real-time detection of nano-structures in a cold Rb cloud.
These structures, which are periodic gratings of atomic density, appear as a result of interference of atoms diffracted
by pulses of an optical standing wave of wavelength A [see Figure 11(a)]. We have detected structures of period \/2
and A/4. Calculations indicate that these density gratings have period A/2n for integer n. While the structures
with the period \/2 are easily detected by Bragg-scattering of an optical probe beam.[Figure 11 (b)], the shorter-
period structures are not. Atomic gratings of various periodicities can be produced by a pair of standing wave pulses



separated by time T5. Pulses with different periodicities appear at different times after the second pulse, as shown in
Figure 12.

a) mp=i—3—2—10li3_i

F=3 _—

b) Lo

k; .

ATOMS
k,

FIG. 10. (a) Level diagram of the Rb transition used in the experiments. (b) Diagram of the experimental configuration:
LO, optical local oscillator; M, mirror; BS, beam splitter; PD, photodiode; k1 and k2 label the excitation beams and readout
pulse (k2 ).
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FIG. 11. Sketch of experiment to produce sub-optical-wavelength atomic gratings: (a) Cloud of cold Rb atoms is illuminated
by short pulses of a standing wave made of two counter-propagating waves of the same polarization; (b) To detect A /2 grating
in the cloud, we switch on a weak field in the mode k2, which is coherently scattered into the mode k1 by the density grating.

To measure these “high-order” gratings, we apply a third standing wave pulse, which converts the atomic coherence
that results in these high-order gratings into a grating with period A/2. Figures 13 (a) and (b) show the conversion
of a grating of period A/4 into a A/2 grating at a later time (shown by the open circles in Fig. 13). A third kind of
echo with Doppler phase diagram shown in Fig. 13 (c) also appears. These three types of echo can be distinguished
by when they appear as a function of times T and T3 [this time dependence is the origin of the names “slow echo”
and “fast echo” in Fig. 13 (a) and (b)].
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FIG. 12. Doppler phase diagram: All possible trajectories of an atom subject to two standing wave pulses, SW1 and SW2
(which are assumed to be short, and whose duration is not resolved in the plot). The wavepacket shown by the dashed
trajectory produces \/4 structure at t = gTz. Solid dots at t = ZéTz, t= %Tz, and t = %Tz show the instants when gratings
of period A\/6 form.

SW2 (a) Slow
o Echo
E
=l
=9
5
2,
o
o
a
t
SW1
SW3 (b) Fast
l Echo Echo
2| swi SW2 3 d 1
£ 27, e
=™}
[ N
o
= g 3 lecho t
8 " ol
7 X,
<, &
SW2 SW3 (c) Stimulated
| Echo
Q
E
=
=™
B Echo
(=5
o
o
a
t T T K
1 2 3 lecho ¢
SW1

FIG. 13. Doppler phase diagrams for (a) Slow echo; (b) Fast echo; and (c) Stimulated echo.

Figure 14 shows typical echo signals from our experiments, obtained from the back scattering of a traveling wave
from the sample as a function of time [as indicated in Fig. 11(b)].
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FIG. 14. Train of echoes, backscattered echo signal vs time: a) T> = 80 usec and T3 = 92 usec. On this trace, the Slow
echo, the two-pulse echo from SW1 and SW2, and the Stimulated echo are displayed. While the echoes in extreme left and
right need all three standing-wave pulses for being generated, the echo in the middle needs only SW1 and SW2. b) 7> = 80
psec and T3 = 148 psec. This trace displays the Fast echo, the two-pulse echo from SW2 and SW3, and the Stimulated echo.
The echo in the middle needs only SW2 and SW3 for being generated. Recoil diagram, explaining formation of the Slow,
Fast, and Stimulated echo are presented in Fig. 13

8. Optical mask

A more direct method than that described above for measuring atomic density distributions of period A/2 (or
fractions thereof) is by use of an optical mask. We have initiated experiments to test an optical mask scheme for both
production and detection of periodic atomic density distributions. In these preliminary experiments, two standing
wave pulses were applied to the cold atoms. The frequency of these pulses was made resonant with the F = 3 to
F’ = 3 transition (581/2 to 5P3/2). The excited F’ = 3 hyperfine state can decay to the F = 2 ground hyperfine state
(as well as the F = 3 ground state) allowing a net loss of atoms from the initial F = 3 ground state hyperfine level.
The first pulse can be thought of as producing an atomic periodic structure, in that all atoms not at the nodes of the
standing wave will be pumped into the F=2 hyperfine level, and effectively lost. If the nodes of the second pulse are
scanned over one period of the standing wave, the fluorescence signal can be used as a measure of the distribution
of the atoms remaining in the F=3 state after the first pulse. This is because all atoms ezcept those at the nodes
contribute to the signal.

In our experiments, the fluorescence signal from the trapped atoms was recorded during the second pulse for various
positions of the nodes of the second standing wave. The results are show in the Figure 15. The larger signal at 180°
indicates that we have created and detected an atomic density variation with a period of half an optical wavelength.
Work is currently underway to improve the resolution of the technique.

4. Production of a bright atomic source

An atomic beam apparatus was constructed using a recirculating oven as a source of Rb atoms. The properties
of the beam were characterized from measurements of the absorption from a weak frequency scanned laser beam.
Typical parameters are a beam velocity of about 500 m/s, with a longitudinal spread of about 40% (full width at half
max). Typical densities were about 10% atoms/cm? at 1 meter from the source, and atomic fluxes of about 5 x 102
atoms/second.
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FIG. 15. Results of optical mask experiment. Fluorescence signal as a function of the shift in the nodes of the second
standing wave relative to the first. A phase of zero corresponds to no shift in the position of the node, and a phase of 180°
corresponds to a shift in the node by half the standing wave period.

5. Creation of magnetic coherence gratings in the atomic beam: magnetic grating free induction decay (MGFID)

We have successfully obtained a magnetic grating free induction decay signal (MGFID), with a small angle between
the two excitation laser beams (see Figure 16).

Free Induction Decay Signal
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FIG. 16. Magnetic grating free-induction decay (MGFID) in an atomic beam. The red and blue curves show the two
quadrature phases of the scattered signal.

This signal represents a spatially periodic atomic ground state coherence, which decays, due to the transverse
velocity spread of the atoms. As in the case of laser-cooled atoms, the time dependence of the decay can be used to
measure the transverse velocity distribution.

Attempts to obtain a MGFID signal with counter-propagating laser beams, as well as a magnetic grating echo signal
were not yet successful. We are currently investigating the reason for this.

6. One dimensional transverse cooling of the atomic beam

Experiments have been carried out on one dimensional transverse cooling of the atomic beam. The degree of
cooling was determined by time-of-flight measurements of the velocity distribution. These measurements were made
by imaging the fluorescence from the atomic beam downstream from the cooling region to get the size of the beam.
The results of these experiments indicate that significant cooling is taking place. Although a smaller transverse
velocity spread should result in a MGFID signal of longer duration, no such effect was observed. We are currently
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trying to understand the relationship between the time-of-flight cooling results, and the lack of the effect of cooling
on the MGFID signal.

Resolution of these problems will allow us to proceed to the next step of producing atomic density gratings in the
atomic beam by the application of optical standing waves.
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